(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^4).


The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)

Rewrite Strategy: INNERMOST

(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of plus: p
The following defined symbols can occur below the 1th argument of plus: p, plus, times, div, quot
The following defined symbols can occur below the 0th argument of p: p, plus, times
The following defined symbols can occur below the 0th argument of if: p, plus, eq, divides, div, times, quot
The following defined symbols can occur below the 1th argument of eq: p, plus, div, times, quot
The following defined symbols can occur below the 0th argument of times: div, quot

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
div(div(x, y), z) → div(x, times(y, z))

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^4).


The TRS R consists of the following rules:

p(0) → 0
plus(x, s(y)) → s(plus(x, p(s(y))))
p(s(x)) → x
divides(y, x) → eq(x, times(div(x, y), y))
div(x, y) → quot(x, y, y)
times(0, y) → 0
pr(x, s(0)) → true
quot(x, 0, s(z)) → s(div(x, s(z)))
div(0, y) → 0
times(s(0), y) → y
quot(0, s(y), z) → 0
if(false, x, y) → pr(x, y)
plus(s(x), y) → s(plus(x, y))
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
times(s(x), y) → plus(y, times(x, y))
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
plus(x, 0) → x
plus(0, y) → y
if(true, x, y) → false
plus(s(x), y) → s(plus(p(s(x)), y))
eq(0, 0) → true
prime(s(s(x))) → pr(s(s(x)), s(x))
quot(s(x), s(y), z) → quot(x, y, z)

Rewrite Strategy: INNERMOST

(3) TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to weighted TRS

(4) Obligation:

The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^4).


The TRS R consists of the following rules:

p(0) → 0 [1]
plus(x, s(y)) → s(plus(x, p(s(y)))) [1]
p(s(x)) → x [1]
divides(y, x) → eq(x, times(div(x, y), y)) [1]
div(x, y) → quot(x, y, y) [1]
times(0, y) → 0 [1]
pr(x, s(0)) → true [1]
quot(x, 0, s(z)) → s(div(x, s(z))) [1]
div(0, y) → 0 [1]
times(s(0), y) → y [1]
quot(0, s(y), z) → 0 [1]
if(false, x, y) → pr(x, y) [1]
plus(s(x), y) → s(plus(x, y)) [1]
eq(s(x), 0) → false [1]
eq(0, s(y)) → false [1]
eq(s(x), s(y)) → eq(x, y) [1]
times(s(x), y) → plus(y, times(x, y)) [1]
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y)) [1]
plus(x, 0) → x [1]
plus(0, y) → y [1]
if(true, x, y) → false [1]
plus(s(x), y) → s(plus(p(s(x)), y)) [1]
eq(0, 0) → true [1]
prime(s(s(x))) → pr(s(s(x)), s(x)) [1]
quot(s(x), s(y), z) → quot(x, y, z) [1]

Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

p(0) → 0 [1]
plus(x, s(y)) → s(plus(x, p(s(y)))) [1]
p(s(x)) → x [1]
divides(y, x) → eq(x, times(div(x, y), y)) [1]
div(x, y) → quot(x, y, y) [1]
times(0, y) → 0 [1]
pr(x, s(0)) → true [1]
quot(x, 0, s(z)) → s(div(x, s(z))) [1]
div(0, y) → 0 [1]
times(s(0), y) → y [1]
quot(0, s(y), z) → 0 [1]
if(false, x, y) → pr(x, y) [1]
plus(s(x), y) → s(plus(x, y)) [1]
eq(s(x), 0) → false [1]
eq(0, s(y)) → false [1]
eq(s(x), s(y)) → eq(x, y) [1]
times(s(x), y) → plus(y, times(x, y)) [1]
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y)) [1]
plus(x, 0) → x [1]
plus(0, y) → y [1]
if(true, x, y) → false [1]
plus(s(x), y) → s(plus(p(s(x)), y)) [1]
eq(0, 0) → true [1]
prime(s(s(x))) → pr(s(s(x)), s(x)) [1]
quot(s(x), s(y), z) → quot(x, y, z) [1]

The TRS has the following type information:
p :: 0:s → 0:s
0 :: 0:s
plus :: 0:s → 0:s → 0:s
s :: 0:s → 0:s
divides :: 0:s → 0:s → true:false
eq :: 0:s → 0:s → true:false
times :: 0:s → 0:s → 0:s
div :: 0:s → 0:s → 0:s
quot :: 0:s → 0:s → 0:s → 0:s
pr :: 0:s → 0:s → true:false
true :: true:false
if :: true:false → 0:s → 0:s → true:false
false :: true:false
prime :: 0:s → true:false

Rewrite Strategy: INNERMOST

(7) CompletionProof (UPPER BOUND(ID) transformation)

The transformation into a RNTS is sound, since:

(a) The obligation is a constructor system where every type has a constant constructor,

(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:


pr
if
prime

(c) The following functions are completely defined:

p
times
div
divides
eq
quot
plus

Due to the following rules being added:

quot(v0, v1, v2) → 0 [0]

And the following fresh constants: none

(8) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

p(0) → 0 [1]
plus(x, s(y)) → s(plus(x, p(s(y)))) [1]
p(s(x)) → x [1]
divides(y, x) → eq(x, times(div(x, y), y)) [1]
div(x, y) → quot(x, y, y) [1]
times(0, y) → 0 [1]
pr(x, s(0)) → true [1]
quot(x, 0, s(z)) → s(div(x, s(z))) [1]
div(0, y) → 0 [1]
times(s(0), y) → y [1]
quot(0, s(y), z) → 0 [1]
if(false, x, y) → pr(x, y) [1]
plus(s(x), y) → s(plus(x, y)) [1]
eq(s(x), 0) → false [1]
eq(0, s(y)) → false [1]
eq(s(x), s(y)) → eq(x, y) [1]
times(s(x), y) → plus(y, times(x, y)) [1]
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y)) [1]
plus(x, 0) → x [1]
plus(0, y) → y [1]
if(true, x, y) → false [1]
plus(s(x), y) → s(plus(p(s(x)), y)) [1]
eq(0, 0) → true [1]
prime(s(s(x))) → pr(s(s(x)), s(x)) [1]
quot(s(x), s(y), z) → quot(x, y, z) [1]
quot(v0, v1, v2) → 0 [0]

The TRS has the following type information:
p :: 0:s → 0:s
0 :: 0:s
plus :: 0:s → 0:s → 0:s
s :: 0:s → 0:s
divides :: 0:s → 0:s → true:false
eq :: 0:s → 0:s → true:false
times :: 0:s → 0:s → 0:s
div :: 0:s → 0:s → 0:s
quot :: 0:s → 0:s → 0:s → 0:s
pr :: 0:s → 0:s → true:false
true :: true:false
if :: true:false → 0:s → 0:s → true:false
false :: true:false
prime :: 0:s → true:false

Rewrite Strategy: INNERMOST

(9) NarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Narrowed the inner basic terms of all right-hand sides by a single narrowing step.

(10) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

p(0) → 0 [1]
plus(x, s(y)) → s(plus(x, y)) [2]
p(s(x)) → x [1]
divides(y, x) → eq(x, times(quot(x, y, y), y)) [2]
divides(y, 0) → eq(0, times(0, y)) [2]
div(x, y) → quot(x, y, y) [1]
times(0, y) → 0 [1]
pr(x, s(0)) → true [1]
quot(x, 0, s(z)) → s(div(x, s(z))) [1]
div(0, y) → 0 [1]
times(s(0), y) → y [1]
quot(0, s(y), z) → 0 [1]
if(false, x, y) → pr(x, y) [1]
plus(s(x), y) → s(plus(x, y)) [1]
eq(s(x), 0) → false [1]
eq(0, s(y)) → false [1]
eq(s(x), s(y)) → eq(x, y) [1]
times(s(0), y) → plus(y, 0) [2]
times(s(s(0)), y) → plus(y, y) [2]
times(s(s(x')), y) → plus(y, plus(y, times(x', y))) [2]
pr(x, s(s(y))) → if(eq(x, times(div(x, s(s(y))), s(s(y)))), x, s(y)) [2]
plus(x, 0) → x [1]
plus(0, y) → y [1]
if(true, x, y) → false [1]
plus(s(x), y) → s(plus(x, y)) [2]
eq(0, 0) → true [1]
prime(s(s(x))) → pr(s(s(x)), s(x)) [1]
quot(s(x), s(y), z) → quot(x, y, z) [1]
quot(v0, v1, v2) → 0 [0]

The TRS has the following type information:
p :: 0:s → 0:s
0 :: 0:s
plus :: 0:s → 0:s → 0:s
s :: 0:s → 0:s
divides :: 0:s → 0:s → true:false
eq :: 0:s → 0:s → true:false
times :: 0:s → 0:s → 0:s
div :: 0:s → 0:s → 0:s
quot :: 0:s → 0:s → 0:s → 0:s
pr :: 0:s → 0:s → true:false
true :: true:false
if :: true:false → 0:s → 0:s → true:false
false :: true:false
prime :: 0:s → true:false

Rewrite Strategy: INNERMOST

(11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID) transformation)

Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction.
The constant constructors are abstracted as follows:

0 => 0
true => 1
false => 0

(12) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 1 }→ quot(x, y, y) :|: z' = x, z'' = y, x >= 0, y >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' = y, y >= 0, z' = 0
divides(z', z'') -{ 2 }→ eq(x, times(quot(x, y, y), y)) :|: y >= 0, x >= 0, z'' = x, z' = y
divides(z', z'') -{ 2 }→ eq(0, times(0, y)) :|: z'' = 0, y >= 0, z' = y
eq(z', z'') -{ 1 }→ eq(x, y) :|: z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' = 1 + x, x >= 0
eq(z', z'') -{ 1 }→ 0 :|: y >= 0, z'' = 1 + y, z' = 0
if(z', z'', z1) -{ 1 }→ pr(x, y) :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ x :|: z' = 1 + x, x >= 0
p(z') -{ 1 }→ 0 :|: z' = 0
plus(z', z'') -{ 1 }→ x :|: z'' = 0, z' = x, x >= 0
plus(z', z'') -{ 1 }→ y :|: z'' = y, y >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(x, y) :|: z' = x, x >= 0, y >= 0, z'' = 1 + y
plus(z', z'') -{ 1 }→ 1 + plus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0
plus(z', z'') -{ 2 }→ 1 + plus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0
pr(z', z'') -{ 2 }→ if(eq(x, times(div(x, 1 + (1 + y)), 1 + (1 + y))), x, 1 + y) :|: z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y)
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + x), 1 + x) :|: x >= 0, z' = 1 + (1 + x)
quot(z', z'', z1) -{ 1 }→ quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 = z, z >= 0, y >= 0, z'' = 1 + y, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0
quot(z', z'', z1) -{ 1 }→ 1 + div(x, 1 + z) :|: z'' = 0, z >= 0, z' = x, x >= 0, z1 = 1 + z
times(z', z'') -{ 1 }→ y :|: z'' = y, y >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(y, y) :|: z' = 1 + (1 + 0), z'' = y, y >= 0
times(z', z'') -{ 2 }→ plus(y, plus(y, times(x', y))) :|: z' = 1 + (1 + x'), z'' = y, x' >= 0, y >= 0
times(z', z'') -{ 2 }→ plus(y, 0) :|: z'' = y, y >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' = y, y >= 0, z' = 0

(13) SimplificationProof (BOTH BOUNDS(ID, ID) transformation)

Simplified the RNTS by moving equalities from the constraints into the right-hand sides.

(14) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 2 }→ eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 }→ eq(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(z', z'' - 1) :|: z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 2 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 2 }→ if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

(15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID) transformation)

Found the following analysis order by SCC decomposition:

{ eq }
{ div, quot }
{ plus }
{ p }
{ times }
{ if, pr }
{ divides }
{ prime }

(16) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 2 }→ eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 }→ eq(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(z', z'' - 1) :|: z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 2 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 2 }→ if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {eq}, {div,quot}, {plus}, {p}, {times}, {if,pr}, {divides}, {prime}

(17) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: eq
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(18) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 2 }→ eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 }→ eq(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(z', z'' - 1) :|: z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 2 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 2 }→ if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {eq}, {div,quot}, {plus}, {p}, {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: ?, size: O(1) [1]

(19) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using PUBS for: eq
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z''

(20) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 2 }→ eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 }→ eq(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(z', z'' - 1) :|: z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 2 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 2 }→ if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {div,quot}, {plus}, {p}, {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]

(21) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(22) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 2 }→ eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(z', z'' - 1) :|: z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 2 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 2 }→ if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {div,quot}, {plus}, {p}, {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]

(23) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: div
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z'

Computed SIZE bound using KoAT for: quot
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z'

(24) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 2 }→ eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(z', z'' - 1) :|: z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 2 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 2 }→ if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {div,quot}, {plus}, {p}, {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: ?, size: O(n1) [z']
quot: runtime: ?, size: O(n1) [1 + z']

(25) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: div
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 3 + 3·z'

Computed RUNTIME bound using KoAT for: quot
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 5 + 3·z' + z''

(26) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 2 }→ eq(z'', times(quot(z'', z', z'), z')) :|: z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(z', z'' - 1) :|: z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 2 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 2 }→ if(eq(z', times(div(z', 1 + (1 + (z'' - 2))), 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {plus}, {p}, {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']

(27) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(28) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 7 + z' + 3·z'' }→ eq(z'', times(s', z')) :|: s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(z', z'' - 1) :|: z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 2 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 5 + 3·z' }→ if(eq(z', times(s2, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {plus}, {p}, {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']

(29) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: plus
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z' + z''

(30) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 7 + z' + 3·z'' }→ eq(z'', times(s', z')) :|: s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(z', z'' - 1) :|: z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 2 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 5 + 3·z' }→ if(eq(z', times(s2, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {plus}, {p}, {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: ?, size: O(n1) [z' + z'']

(31) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: plus
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + 2·z' + 2·z''

(32) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 7 + z' + 3·z'' }→ eq(z'', times(s', z')) :|: s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 2 }→ 1 + plus(z', z'' - 1) :|: z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 2 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 5 + 3·z' }→ if(eq(z', times(s2, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', z'') :|: z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 2 }→ plus(z'', 0) :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {p}, {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']

(33) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(34) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 7 + z' + 3·z'' }→ eq(z'', times(s', z')) :|: s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 5 + 3·z' }→ if(eq(z', times(s2, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {p}, {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']

(35) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: p
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z'

(36) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 7 + z' + 3·z'' }→ eq(z'', times(s', z')) :|: s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 5 + 3·z' }→ if(eq(z', times(s2, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {p}, {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: ?, size: O(n1) [z']

(37) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: p
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(38) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 7 + z' + 3·z'' }→ eq(z'', times(s', z')) :|: s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 5 + 3·z' }→ if(eq(z', times(s2, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']

(39) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(40) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 7 + z' + 3·z'' }→ eq(z'', times(s', z')) :|: s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 5 + 3·z' }→ if(eq(z', times(s2, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']

(41) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using PUBS for: times
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 2·z'·z'' + 2·z''

(42) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 7 + z' + 3·z'' }→ eq(z'', times(s', z')) :|: s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 5 + 3·z' }→ if(eq(z', times(s2, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {times}, {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: ?, size: O(n2) [2·z'·z'' + 2·z'']

(43) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: times
after applying outer abstraction to obtain an ITS,
resulting in: O(n3) with polynomial bound: 8 + 4·z' + 8·z'2·z'' + 6·z''

(44) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 7 + z' + 3·z'' }→ eq(z'', times(s', z')) :|: s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 2 }→ eq(0, times(0, z')) :|: z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 5 + 3·z' }→ if(eq(z', times(s2, 1 + (1 + (z'' - 2)))), z', 1 + (z'' - 2)) :|: s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 2 }→ plus(z'', plus(z'', times(z' - 2, z''))) :|: z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']

(45) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(46) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 14 + s16 + 4·s2 + 8·s22·z'' + 3·z' + 6·z'' }→ if(s17, z', 1 + (z'' - 2)) :|: s16 >= 0, s16 <= 2 * (s2 * (1 + (1 + (z'' - 2)))) + 2 * (1 + (1 + (z'' - 2))), s17 >= 0, s17 <= 1, s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']

(47) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: if
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

Computed SIZE bound using CoFloCo for: pr
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(48) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 14 + s16 + 4·s2 + 8·s22·z'' + 3·z' + 6·z'' }→ if(s17, z', 1 + (z'' - 2)) :|: s16 >= 0, s16 <= 2 * (s2 * (1 + (1 + (z'' - 2)))) + 2 * (1 + (1 + (z'' - 2))), s17 >= 0, s17 <= 1, s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']
if: runtime: ?, size: O(1) [1]
pr: runtime: ?, size: O(1) [1]

(49) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: if
after applying outer abstraction to obtain an ITS,
resulting in: O(n4) with polynomial bound: 17 + 7·z'' + 16·z''·z1 + 4·z''·z12 + 8·z''2·z1 + 16·z''2·z12 + 38·z1 + 16·z12

Computed RUNTIME bound using CoFloCo for: pr
after applying outer abstraction to obtain an ITS,
resulting in: INF with polynomial bound: ?

(50) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ pr(z'', z1) :|: z'' >= 0, z1 >= 0, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z'' >= 0, z1 >= 0, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 14 + s16 + 4·s2 + 8·s22·z'' + 3·z' + 6·z'' }→ if(s17, z', 1 + (z'' - 2)) :|: s16 >= 0, s16 <= 2 * (s2 * (1 + (1 + (z'' - 2)))) + 2 * (1 + (1 + (z'' - 2))), s17 >= 0, s17 <= 1, s2 >= 0, s2 <= 1 * z', z' >= 0, z'' - 2 >= 0
pr(z', z'') -{ 1 }→ 1 :|: z' >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']
if: runtime: O(n4) [17 + 7·z'' + 16·z''·z1 + 4·z''·z12 + 8·z''2·z1 + 16·z''2·z12 + 38·z1 + 16·z12], size: O(1) [1]
pr: runtime: INF, size: O(1) [1]

(51) RetryTechniqueProof (BOTH BOUNDS(ID, ID) transformation)

Performed narrowing of the following TRS rules:

if(false, x, y) → pr(x, y) [1]
if(true, x, y) → false [1]
pr(x, s(s(y))) → if(eq(x, times(div(x, s(s(y))), s(s(y)))), x, s(y)) [2]
pr(x, s(0)) → true [1]

And obtained the following new TRS rules:

if(false, x, y) → pr(x, y) [1]
if(true, x, y) → false [1]
pr(x, s(s(y))) → if(eq(x, times(quot(x, s(s(y)), s(s(y))), s(s(y)))), x, s(y)) [3]
pr(0, s(s(y))) → if(eq(0, times(0, s(s(y)))), 0, s(y)) [3]
pr(x, s(0)) → true [1]

Which were then size abstracted to RNTS rules to simplify the current SCC:

if(z', z'', z1) -{ 1 }→ pr(x, y) :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
pr(z', z'') -{ 3 }→ if(eq(x, times(quot(x, 1 + (1 + y), 1 + (1 + y)), 1 + (1 + y))), x, 1 + y) :|: z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y)
pr(z', z'') -{ 3 }→ if(eq(0, times(0, 1 + (1 + y))), 0, 1 + y) :|: y >= 0, z'' = 1 + (1 + y), z' = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0

(52) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1 }→ pr(x, y) :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 3 }→ if(eq(x, times(quot(x, 1 + (1 + y), 1 + (1 + y)), 1 + (1 + y))), x, 1 + y) :|: z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y)
pr(z', z'') -{ 3 }→ if(eq(0, times(0, 1 + (1 + y))), 0, 1 + y) :|: y >= 0, z'' = 1 + (1 + y), z' = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']

(53) InliningProof (UPPER BOUND(ID) transformation)

Inlined the following terminating rules on right-hand sides where appropriate:

times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0

(54) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1 }→ pr(x, y) :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 7 + 3·x + y }→ if(eq(x, times(s3, 1 + (1 + y))), x, 1 + y) :|: z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), s3 >= 0, s3 <= 1 * (x - 1) + 1, 1 + (1 + y) >= 0, x - 1 >= 0, 1 + (1 + y) - 1 >= 0
pr(z', z'') -{ 3 }→ if(eq(x, times(0, 1 + (1 + y))), x, 1 + y) :|: z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0
pr(z', z'') -{ 4 }→ if(eq(x, times(0, 1 + (1 + y))), x, 1 + y) :|: z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0, 1 + (1 + y) - 1 >= 0, x = 0
pr(z', z'') -{ 5 }→ if(1, 0, 1 + y) :|: y >= 0, z'' = 1 + (1 + y), z' = 0, 1 + (1 + y) >= 0, 0 = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']

(55) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(56) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1 }→ pr(x, y) :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 28 + s2 + 4·s3 + 16·s32 + 8·s32·y + 3·x + 7·y }→ if(s16, x, 1 + y) :|: s2 >= 0, s2 <= 2 * (s3 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s16 >= 0, s16 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), s3 >= 0, s3 <= 1 * (x - 1) + 1, 1 + (1 + y) >= 0, x - 1 >= 0, 1 + (1 + y) - 1 >= 0
pr(z', z'') -{ 24 + s17 + 6·y }→ if(s18, x, 1 + y) :|: s17 >= 0, s17 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s18 >= 0, s18 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0
pr(z', z'') -{ 25 + s19 + 6·y }→ if(s20, x, 1 + y) :|: s19 >= 0, s19 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s20 >= 0, s20 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0, 1 + (1 + y) - 1 >= 0, x = 0
pr(z', z'') -{ 5 }→ if(1, 0, 1 + y) :|: y >= 0, z'' = 1 + (1 + y), z' = 0, 1 + (1 + y) >= 0, 0 = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']

(57) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: if
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

Computed SIZE bound using CoFloCo for: pr
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(58) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1 }→ pr(x, y) :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 28 + s2 + 4·s3 + 16·s32 + 8·s32·y + 3·x + 7·y }→ if(s16, x, 1 + y) :|: s2 >= 0, s2 <= 2 * (s3 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s16 >= 0, s16 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), s3 >= 0, s3 <= 1 * (x - 1) + 1, 1 + (1 + y) >= 0, x - 1 >= 0, 1 + (1 + y) - 1 >= 0
pr(z', z'') -{ 24 + s17 + 6·y }→ if(s18, x, 1 + y) :|: s17 >= 0, s17 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s18 >= 0, s18 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0
pr(z', z'') -{ 25 + s19 + 6·y }→ if(s20, x, 1 + y) :|: s19 >= 0, s19 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s20 >= 0, s20 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0, 1 + (1 + y) - 1 >= 0, x = 0
pr(z', z'') -{ 5 }→ if(1, 0, 1 + y) :|: y >= 0, z'' = 1 + (1 + y), z' = 0, 1 + (1 + y) >= 0, 0 = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {if,pr}, {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']
if: runtime: ?, size: O(1) [1]
pr: runtime: ?, size: O(1) [1]

(59) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: if
after applying outer abstraction to obtain an ITS,
resulting in: O(n4) with polynomial bound: 97 + 11·z'' + 24·z''·z1 + 4·z''·z12 + 16·z''2 + 40·z''2·z1 + 16·z''2·z12 + 215·z1 + 50·z12

Computed RUNTIME bound using KoAT for: pr
after applying outer abstraction to obtain an ITS,
resulting in: O(n4) with polynomial bound: 1543 + 89·z' + 66·z'·z'' + 8·z'·z''2 + 160·z'2 + 152·z'2·z'' + 32·z'2·z''2 + 1285·z'' + 200·z''2

(60) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1 }→ pr(x, y) :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 28 + s2 + 4·s3 + 16·s32 + 8·s32·y + 3·x + 7·y }→ if(s16, x, 1 + y) :|: s2 >= 0, s2 <= 2 * (s3 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s16 >= 0, s16 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), s3 >= 0, s3 <= 1 * (x - 1) + 1, 1 + (1 + y) >= 0, x - 1 >= 0, 1 + (1 + y) - 1 >= 0
pr(z', z'') -{ 24 + s17 + 6·y }→ if(s18, x, 1 + y) :|: s17 >= 0, s17 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s18 >= 0, s18 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0
pr(z', z'') -{ 25 + s19 + 6·y }→ if(s20, x, 1 + y) :|: s19 >= 0, s19 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s20 >= 0, s20 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0, 1 + (1 + y) - 1 >= 0, x = 0
pr(z', z'') -{ 5 }→ if(1, 0, 1 + y) :|: y >= 0, z'' = 1 + (1 + y), z' = 0, 1 + (1 + y) >= 0, 0 = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 1 }→ pr(1 + (1 + (z' - 2)), 1 + (z' - 2)) :|: z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']
if: runtime: O(n4) [97 + 11·z'' + 24·z''·z1 + 4·z''·z12 + 16·z''2 + 40·z''2·z1 + 16·z''2·z12 + 215·z1 + 50·z12], size: O(1) [1]
pr: runtime: O(n4) [1543 + 89·z' + 66·z'·z'' + 8·z'·z''2 + 160·z'2 + 152·z'2·z'' + 32·z'2·z''2 + 1285·z'' + 200·z''2], size: O(1) [1]

(61) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(62) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1544 + 89·x + 66·x·y + 8·x·y2 + 160·x2 + 152·x2·y + 32·x2·y2 + 1285·y + 200·y2 }→ s21 :|: s21 >= 0, s21 <= 1, z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 367 + 315·y + 50·y2 }→ s23 :|: s23 >= 0, s23 <= 1, y >= 0, z'' = 1 + (1 + y), z' = 0, 1 + (1 + y) >= 0, 0 = 0
pr(z', z'') -{ 390 + s2 + 4·s3 + 16·s32 + 8·s32·y + 42·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 322·y + 50·y2 }→ s24 :|: s24 >= 0, s24 <= 1, s2 >= 0, s2 <= 2 * (s3 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s16 >= 0, s16 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), s3 >= 0, s3 <= 1 * (x - 1) + 1, 1 + (1 + y) >= 0, x - 1 >= 0, 1 + (1 + y) - 1 >= 0
pr(z', z'') -{ 386 + s17 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s25 :|: s25 >= 0, s25 <= 1, s17 >= 0, s17 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s18 >= 0, s18 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0
pr(z', z'') -{ 387 + s19 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s26 :|: s26 >= 0, s26 <= 1, s19 >= 0, s19 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s20 >= 0, s20 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0, 1 + (1 + y) - 1 >= 0, x = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 459 + 916·z' + 290·z'2 + 96·z'3 + 32·z'4 }→ s22 :|: s22 >= 0, s22 <= 1, z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']
if: runtime: O(n4) [97 + 11·z'' + 24·z''·z1 + 4·z''·z12 + 16·z''2 + 40·z''2·z1 + 16·z''2·z12 + 215·z1 + 50·z12], size: O(1) [1]
pr: runtime: O(n4) [1543 + 89·z' + 66·z'·z'' + 8·z'·z''2 + 160·z'2 + 152·z'2·z'' + 32·z'2·z''2 + 1285·z'' + 200·z''2], size: O(1) [1]

(63) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: divides
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(64) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1544 + 89·x + 66·x·y + 8·x·y2 + 160·x2 + 152·x2·y + 32·x2·y2 + 1285·y + 200·y2 }→ s21 :|: s21 >= 0, s21 <= 1, z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 367 + 315·y + 50·y2 }→ s23 :|: s23 >= 0, s23 <= 1, y >= 0, z'' = 1 + (1 + y), z' = 0, 1 + (1 + y) >= 0, 0 = 0
pr(z', z'') -{ 390 + s2 + 4·s3 + 16·s32 + 8·s32·y + 42·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 322·y + 50·y2 }→ s24 :|: s24 >= 0, s24 <= 1, s2 >= 0, s2 <= 2 * (s3 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s16 >= 0, s16 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), s3 >= 0, s3 <= 1 * (x - 1) + 1, 1 + (1 + y) >= 0, x - 1 >= 0, 1 + (1 + y) - 1 >= 0
pr(z', z'') -{ 386 + s17 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s25 :|: s25 >= 0, s25 <= 1, s17 >= 0, s17 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s18 >= 0, s18 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0
pr(z', z'') -{ 387 + s19 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s26 :|: s26 >= 0, s26 <= 1, s19 >= 0, s19 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s20 >= 0, s20 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0, 1 + (1 + y) - 1 >= 0, x = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 459 + 916·z' + 290·z'2 + 96·z'3 + 32·z'4 }→ s22 :|: s22 >= 0, s22 <= 1, z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {divides}, {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']
if: runtime: O(n4) [97 + 11·z'' + 24·z''·z1 + 4·z''·z12 + 16·z''2 + 40·z''2·z1 + 16·z''2·z12 + 215·z1 + 50·z12], size: O(1) [1]
pr: runtime: O(n4) [1543 + 89·z' + 66·z'·z'' + 8·z'·z''2 + 160·z'2 + 152·z'2·z'' + 32·z'2·z''2 + 1285·z'' + 200·z''2], size: O(1) [1]
divides: runtime: ?, size: O(1) [1]

(65) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: divides
after applying outer abstraction to obtain an ITS,
resulting in: O(n3) with polynomial bound: 31 + 27·z' + 18·z'·z'' + 8·z'·z''2 + 7·z''

(66) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1544 + 89·x + 66·x·y + 8·x·y2 + 160·x2 + 152·x2·y + 32·x2·y2 + 1285·y + 200·y2 }→ s21 :|: s21 >= 0, s21 <= 1, z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 367 + 315·y + 50·y2 }→ s23 :|: s23 >= 0, s23 <= 1, y >= 0, z'' = 1 + (1 + y), z' = 0, 1 + (1 + y) >= 0, 0 = 0
pr(z', z'') -{ 390 + s2 + 4·s3 + 16·s32 + 8·s32·y + 42·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 322·y + 50·y2 }→ s24 :|: s24 >= 0, s24 <= 1, s2 >= 0, s2 <= 2 * (s3 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s16 >= 0, s16 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), s3 >= 0, s3 <= 1 * (x - 1) + 1, 1 + (1 + y) >= 0, x - 1 >= 0, 1 + (1 + y) - 1 >= 0
pr(z', z'') -{ 386 + s17 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s25 :|: s25 >= 0, s25 <= 1, s17 >= 0, s17 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s18 >= 0, s18 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0
pr(z', z'') -{ 387 + s19 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s26 :|: s26 >= 0, s26 <= 1, s19 >= 0, s19 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s20 >= 0, s20 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0, 1 + (1 + y) - 1 >= 0, x = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 459 + 916·z' + 290·z'2 + 96·z'3 + 32·z'4 }→ s22 :|: s22 >= 0, s22 <= 1, z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']
if: runtime: O(n4) [97 + 11·z'' + 24·z''·z1 + 4·z''·z12 + 16·z''2 + 40·z''2·z1 + 16·z''2·z12 + 215·z1 + 50·z12], size: O(1) [1]
pr: runtime: O(n4) [1543 + 89·z' + 66·z'·z'' + 8·z'·z''2 + 160·z'2 + 152·z'2·z'' + 32·z'2·z''2 + 1285·z'' + 200·z''2], size: O(1) [1]
divides: runtime: O(n3) [31 + 27·z' + 18·z'·z'' + 8·z'·z''2 + 7·z''], size: O(1) [1]

(67) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(68) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1544 + 89·x + 66·x·y + 8·x·y2 + 160·x2 + 152·x2·y + 32·x2·y2 + 1285·y + 200·y2 }→ s21 :|: s21 >= 0, s21 <= 1, z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 367 + 315·y + 50·y2 }→ s23 :|: s23 >= 0, s23 <= 1, y >= 0, z'' = 1 + (1 + y), z' = 0, 1 + (1 + y) >= 0, 0 = 0
pr(z', z'') -{ 390 + s2 + 4·s3 + 16·s32 + 8·s32·y + 42·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 322·y + 50·y2 }→ s24 :|: s24 >= 0, s24 <= 1, s2 >= 0, s2 <= 2 * (s3 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s16 >= 0, s16 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), s3 >= 0, s3 <= 1 * (x - 1) + 1, 1 + (1 + y) >= 0, x - 1 >= 0, 1 + (1 + y) - 1 >= 0
pr(z', z'') -{ 386 + s17 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s25 :|: s25 >= 0, s25 <= 1, s17 >= 0, s17 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s18 >= 0, s18 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0
pr(z', z'') -{ 387 + s19 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s26 :|: s26 >= 0, s26 <= 1, s19 >= 0, s19 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s20 >= 0, s20 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0, 1 + (1 + y) - 1 >= 0, x = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 459 + 916·z' + 290·z'2 + 96·z'3 + 32·z'4 }→ s22 :|: s22 >= 0, s22 <= 1, z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']
if: runtime: O(n4) [97 + 11·z'' + 24·z''·z1 + 4·z''·z12 + 16·z''2 + 40·z''2·z1 + 16·z''2·z12 + 215·z1 + 50·z12], size: O(1) [1]
pr: runtime: O(n4) [1543 + 89·z' + 66·z'·z'' + 8·z'·z''2 + 160·z'2 + 152·z'2·z'' + 32·z'2·z''2 + 1285·z'' + 200·z''2], size: O(1) [1]
divides: runtime: O(n3) [31 + 27·z' + 18·z'·z'' + 8·z'·z''2 + 7·z''], size: O(1) [1]

(69) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: prime
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(70) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1544 + 89·x + 66·x·y + 8·x·y2 + 160·x2 + 152·x2·y + 32·x2·y2 + 1285·y + 200·y2 }→ s21 :|: s21 >= 0, s21 <= 1, z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 367 + 315·y + 50·y2 }→ s23 :|: s23 >= 0, s23 <= 1, y >= 0, z'' = 1 + (1 + y), z' = 0, 1 + (1 + y) >= 0, 0 = 0
pr(z', z'') -{ 390 + s2 + 4·s3 + 16·s32 + 8·s32·y + 42·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 322·y + 50·y2 }→ s24 :|: s24 >= 0, s24 <= 1, s2 >= 0, s2 <= 2 * (s3 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s16 >= 0, s16 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), s3 >= 0, s3 <= 1 * (x - 1) + 1, 1 + (1 + y) >= 0, x - 1 >= 0, 1 + (1 + y) - 1 >= 0
pr(z', z'') -{ 386 + s17 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s25 :|: s25 >= 0, s25 <= 1, s17 >= 0, s17 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s18 >= 0, s18 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0
pr(z', z'') -{ 387 + s19 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s26 :|: s26 >= 0, s26 <= 1, s19 >= 0, s19 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s20 >= 0, s20 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0, 1 + (1 + y) - 1 >= 0, x = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 459 + 916·z' + 290·z'2 + 96·z'3 + 32·z'4 }→ s22 :|: s22 >= 0, s22 <= 1, z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed: {prime}
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']
if: runtime: O(n4) [97 + 11·z'' + 24·z''·z1 + 4·z''·z12 + 16·z''2 + 40·z''2·z1 + 16·z''2·z12 + 215·z1 + 50·z12], size: O(1) [1]
pr: runtime: O(n4) [1543 + 89·z' + 66·z'·z'' + 8·z'·z''2 + 160·z'2 + 152·z'2·z'' + 32·z'2·z''2 + 1285·z'' + 200·z''2], size: O(1) [1]
divides: runtime: O(n3) [31 + 27·z' + 18·z'·z'' + 8·z'·z''2 + 7·z''], size: O(1) [1]
prime: runtime: ?, size: O(1) [1]

(71) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: prime
after applying outer abstraction to obtain an ITS,
resulting in: O(n4) with polynomial bound: 459 + 916·z' + 290·z'2 + 96·z'3 + 32·z'4

(72) Obligation:

Complexity RNTS consisting of the following rules:

div(z', z'') -{ 6 + 3·z' + z'' }→ s'' :|: s'' >= 0, s'' <= 1 * z' + 1, z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
divides(z', z'') -{ 16 + 4·s' + 8·s'2·z' + s9 + 7·z' + 3·z'' }→ s10 :|: s9 >= 0, s9 <= 2 * (s' * z') + 2 * z', s10 >= 0, s10 <= 1, s' >= 0, s' <= 1 * z'' + 1, z' >= 0, z'' >= 0
divides(z', z'') -{ 11 + s11 + 6·z' }→ s12 :|: s11 >= 0, s11 <= 2 * (0 * z') + 2 * z', s12 >= 0, s12 <= 1, z'' = 0, z' >= 0
eq(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z'' - 1 >= 0
eq(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' - 1 >= 0, z' = 0
eq(z', z'') -{ 1 }→ 0 :|: z'' = 0, z' - 1 >= 0
if(z', z'', z1) -{ 1544 + 89·x + 66·x·y + 8·x·y2 + 160·x2 + 152·x2·y + 32·x2·y2 + 1285·y + 200·y2 }→ s21 :|: s21 >= 0, s21 <= 1, z1 = y, x >= 0, y >= 0, z'' = x, z' = 0
if(z', z'', z1) -{ 1 }→ 0 :|: z1 = y, x >= 0, y >= 0, z'' = x, z' = 1
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0
plus(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * z' + 1 * (z'' - 1), z' >= 0, z'' - 1 >= 0
plus(z', z'') -{ 2·z' + 2·z'' }→ 1 + s5 :|: s5 >= 0, s5 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
plus(z', z'') -{ 1 + 2·z' + 2·z'' }→ 1 + s8 :|: s8 >= 0, s8 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
pr(z', z'') -{ 367 + 315·y + 50·y2 }→ s23 :|: s23 >= 0, s23 <= 1, y >= 0, z'' = 1 + (1 + y), z' = 0, 1 + (1 + y) >= 0, 0 = 0
pr(z', z'') -{ 390 + s2 + 4·s3 + 16·s32 + 8·s32·y + 42·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 322·y + 50·y2 }→ s24 :|: s24 >= 0, s24 <= 1, s2 >= 0, s2 <= 2 * (s3 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s16 >= 0, s16 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), s3 >= 0, s3 <= 1 * (x - 1) + 1, 1 + (1 + y) >= 0, x - 1 >= 0, 1 + (1 + y) - 1 >= 0
pr(z', z'') -{ 386 + s17 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s25 :|: s25 >= 0, s25 <= 1, s17 >= 0, s17 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s18 >= 0, s18 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0
pr(z', z'') -{ 387 + s19 + 39·x + 32·x·y + 4·x·y2 + 72·x2 + 72·x2·y + 16·x2·y2 + 321·y + 50·y2 }→ s26 :|: s26 >= 0, s26 <= 1, s19 >= 0, s19 <= 2 * (0 * (1 + (1 + y))) + 2 * (1 + (1 + y)), s20 >= 0, s20 <= 1, z' = x, x >= 0, y >= 0, z'' = 1 + (1 + y), 1 + (1 + y) >= 0, 1 + (1 + y) - 1 >= 0, x = 0
pr(z', z'') -{ 1 }→ 1 :|: z' = x, x >= 0, z'' = 1 + 0
prime(z') -{ 459 + 916·z' + 290·z'2 + 96·z'3 + 32·z'4 }→ s22 :|: s22 >= 0, s22 <= 1, z' - 2 >= 0
quot(z', z'', z1) -{ 2 + 3·z' + z'' }→ s3 :|: s3 >= 0, s3 <= 1 * (z' - 1) + 1, z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 0 }→ 0 :|: z' >= 0, z'' >= 0, z1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 4 + 3·z' }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * z', z'' = 0, z1 - 1 >= 0, z' >= 0
times(z', z'') -{ 4 + 2·s13 + 2·s14 + 4·z' + -32·z'·z'' + 8·z'2·z'' + 42·z'' }→ s15 :|: s13 >= 0, s13 <= 2 * ((z' - 2) * z'') + 2 * z'', s14 >= 0, s14 <= 1 * z'' + 1 * s13, s15 >= 0, s15 <= 1 * z'' + 1 * s14, z' - 2 >= 0, z'' >= 0
times(z', z'') -{ 3 + 2·z'' }→ s6 :|: s6 >= 0, s6 <= 1 * z'' + 1 * 0, z'' >= 0, z' = 1 + 0
times(z', z'') -{ 3 + 4·z'' }→ s7 :|: s7 >= 0, s7 <= 1 * z'' + 1 * z'', z' = 1 + (1 + 0), z'' >= 0
times(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 1 + 0
times(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0

Function symbols to be analyzed:
Previous analysis results are:
eq: runtime: O(n1) [1 + z''], size: O(1) [1]
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z']
quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z']
plus: runtime: O(n1) [1 + 2·z' + 2·z''], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
times: runtime: O(n3) [8 + 4·z' + 8·z'2·z'' + 6·z''], size: O(n2) [2·z'·z'' + 2·z'']
if: runtime: O(n4) [97 + 11·z'' + 24·z''·z1 + 4·z''·z12 + 16·z''2 + 40·z''2·z1 + 16·z''2·z12 + 215·z1 + 50·z12], size: O(1) [1]
pr: runtime: O(n4) [1543 + 89·z' + 66·z'·z'' + 8·z'·z''2 + 160·z'2 + 152·z'2·z'' + 32·z'2·z''2 + 1285·z'' + 200·z''2], size: O(1) [1]
divides: runtime: O(n3) [31 + 27·z' + 18·z'·z'' + 8·z'·z''2 + 7·z''], size: O(1) [1]
prime: runtime: O(n4) [459 + 916·z' + 290·z'2 + 96·z'3 + 32·z'4], size: O(1) [1]

(73) FinalProof (EQUIVALENT transformation)

Computed overall runtime complexity

(74) BOUNDS(1, n^4)